

George F Luger
William A Stubblefield

2009 Pearson Education

Contents

Preface ix

Part I	Language Idioms and the Master Programmer 1	
Chapter 1	Idioms, Patterns, and Programming 3 1.1 Introduction: Idioms and Patterns 3 1.2 Selected Examples of Language Idioms 6 1.3 A Brief History of Three Programming Paradigms 11 1.4 A Summary of Our Task 15	
Part II	Programming in Prolog 17	
Chapter 2	Prolog: Representation 19 2.1 Introduction: Logic-Based Representation 19 2.2 Prolog Syntax 20 2.3 Creating, Changing, and Tracing a Prolog Computation 24 2.4 Lists and Recursion in Prolog 25 2.5 Structured Representation and Inheritance Search 28 Exercises 32	
Chapter 3	Abstract Data Types and Search 33 3.1 Introduction 33 3.2 Using out to Control Search in Prolog 36 3.3 Abstract Data Types (ADTs) in Prolog 38 Exercises 42	
Chapter 4	Depth- Breadth-, and Best-First Search434.1 Production System Search in Prolog434.2 A Production System Solution of the FWGC Problem464.3 Designing Alternative Search Strategies52Exercises58	
Chapter 5	Meta-Linguistic Abstraction, Types, and Meta-Interpreters 5.1 Meta-Interpreters, Types, and Unification 59 5.2 Types in Prolog 61 5.3 Unification, Variable Binding, and Evaluation 64 Exercises 68	•

Chapter 6	Planner 59 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog 69 6.2 A Shell for a Rule-Based System 73 6.3 A Prolog Planner 82 Exercises 85
Chapter 7	Machine Learning Algorithms in Prolog 7.1 Machine Learning: Version Space Search 7.2 Explanation Based Learning in Prolog Exercises 106 87 100
Chapter 8	Natural Language Processing in Prolog 107 8.1 Natural Language Understanding 107 8.2 Prolog Based Semantic Representation 108 8.3 A Context-Free Parser in Prolog 111 8.4 Probabilistic Parsers in Prolog 114 8.5 A Context-Sensitive Parser in Prolog 119 8.6 A Recursive Descent Semantic Net Parser 120 Exercises 123
Chapter 9	Dynamic Programming and the Earley Parser 9.1 Dynamic Programming Revisited 125 9.2 The Earley Parser 126 9.3 The Earley Parser in Prolog 134 Exercises 139
Chapter 10	Prolog: Final Thoughts 141 10.1 Towards a Procedural Semantics 141 10.2 Prolog and Automated Reasoning 144 10.3 Prolog Idioms, Extensions, and References 145
Part III	Programming in Lisp 149
Chapter 11	S-Expressions, the Syntax of Lisp 11.1 Introduction to Symbol Expressions 151 11.2 Control of Lisp Evaluation 154
	11.3 Programming in Lisp: Creating New Functions 156
	11.4 Program Control: Conditionals and Predicates 157 Exercises 160

Chapter 12	Lists and Recursive Search 161
	12.1 Functions, Lists, and Symbolic Computing 12.2 Lists as Recursive Structures 163 12.3 Nested Lists, Structure, and car/cdr Recursion 166 Exercises 168
Chapter 13	Variables, Datratypes, and Search 171 13.1 Variables and Datatypes 171 13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem 177 Exercises 182
Chapter 14	Higher-Order-Functions and Flexible Search 14.1 Higher-Order Functions and Abstraction 14.2 Search Strategies in Lisp 189 Exercises 193
Chapter 15	Unification and Embedded Languages in Lisp 195 15.1 Introduction 195 15.2 Interpreters and Embedded Languages 203 Exercises 205
Chapter 16	Logic programming in Lisp 207 16.1 A Simple Logic Programming Language 207 16.2 Streams and Stream Processing 209 16.3 A Stream-Based logic Programming Interpreter 211 Exercises 217
Chapter 17	Lisp-shell: An Expert System Shell in Lisp 17.1 Streams and Delayed Evaluation 17.2 An Expert System Shell in Lisp Exercises 232
Chapter 18	Semantic Networks, Inheritance, and CLOS 233 18.1 Semantic nets and Inheritance in Lisp 233 18.2 Object-Oriented Programming Using CLOS 237 18.3 CLOS Example: A Thermostat Simulation 244 Exercises 250
Chapter 19	Machine Learning in Lisp25119.1 Learning: The ID3 Algorithm25119.2 Implementing ID3259

Exercises

266

Chapter 20	Lisp: Final Thoughts 267	
Part IV	Programming in Java 269	
Chapter 21	Java, Representation and Object-Oriented Programming21.1 Introduction to O-O Representation and Design27321.2 Object Orientation27421.3 Classes and Encapsulation27521.4 Polymorphism27621.5 Inheritance27721.6 Interfaces28021.7 Scoping and Access28221.8 The Java Standard Library28321.9 Conclusions: Design in Java284Exercises285	273
Chapter 22	Problem Spaces and Search 287 21.1 Abstraction and Generality in Java 287 21.2 Search Algorithms 288 21.3 Abstracting Problem States 292 21.4 Traversing the Solution Space 295 21:5 Putting the Framework to Use 298 Exercises 303	
Chapter 23	Java Representation for Predicate Calculus and Unification 23.1 Introduction to the Task 305 23.2 A Review of the Predicate Calculus and Unification 307 23.3 Building a Predicate Calculus Problem Solver in Java 310 23.4 Design Discussion 320 23.5 Conclusions: Mapping Logic into Objects 322 Exercises 323	305
Chapter 24	A Logic-Based Reasoning System 325 24.1 Introduction 325 24.2 Reasoning in Logic as Searching an And/Or Graph 325 24.3 The Design of a Logic-Based Reasoning System 329 24.4 Implementing Complex Logic Expressions 330 24.5 Logic-Based Reasoning as And/Or Graph Search 335 24.6 Testing the Reasoning System 346	

	24.7 Design Discussion 348 Exercises 350
Chapter 25	An Expert System Shell 351 25.1 Introduction: Expert Systems 351 25.2 Certainty Factors and the Unification Problem Solver 352 25.3 Adding User Interactions 358 25.4 Design Discussion 360 Exercises 361
Chapter 26	Case Studies: JESS and other Expert System Shells in Java 26.1 Introduction 363 26.2 JESS 363 26.3 Other Expert system Shells 364 26.4 Using Open Source Tools 365
Chapter 27	ID3: Learning from Examples 367 27.1 Introduction to Supervised Learning 367 27.2 Representing Knowledge as Decision Trees 367 27.3 A Decision Tree Induction program 370 27.4 ID3: An Information Theoretic Tree Induction Algorithm 385 Exercises 388
Chapter 28	Genetic and Evolutionary Computing 389 28.1 Introduction 389 28.2 The Genetic Algorithm: A First Pass 389 28.3 A GA Java Implementation in Java 393 28.4 Conclusion: Complex Problem Solving and Adaptation 401 Exercises 401
Chapter 29	Case Studies: Java Machine Learning Software Available on the Web 403 29.1 Java Machine Learning Software 403
Chapter 30	The Earley Parser: Dynamic Programming in Java 405 30.1 Chart Parsing 405 30.2 The Earley Parser: Components 406 30.3 The Earley Parser: Java Code 408 30.4 The Completed Parser 414 30.5 Generating Parse Trees from Charts and Grammar Rules 419 Exercises 422

Index

443

Chapter 31	Case Studies: Java Natural Language Tools on the Web			
	31.1 Java Natural Language Processing Software 423			
	31.2 LingPipe from the University of Pennsylvania 423			
	31.3 The Stanford Natural Language Processing Group Software			
	31.4 Sun's Speech API 426			
Part V	Model Building and the Master Programmer 429			
Chapter 32	Conclusion: The Master Programmer 431			
	32.1 Paradigm-Based Abstractions and Idioms 431			
	32.2 Programming as a Tool for Exploring Problem Domains	433		
	32.3 Programming as a Social Activity 434			
	32.4 Final Thoughts 437			
	Bibliography 439			